人教版因数和倍数的教学反思【20篇】
浏览
6753范文
24篇1:因数和倍数的教学反思
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的`终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
篇2:253的倍数的特征教学反思 3的倍数的特征教学目标
在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的.时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。
高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
篇3:253的倍数的特征教学反思 3的倍数的特征教学目标
《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的.倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。
为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。
这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。
篇4:253的倍数的特征教学反思 3的倍数的特征教学目标
从以上的教学过程中,可以看到掌握2、5的倍数的特征不是本节课的唯一目标,在制定目标的时候,还从数学研究方法这个方面着手,在学生掌握知识的同时,更注重让学生了解科学的数学研究的过程。
我们知道,一堂课的知识目标是很容易达成的,但是如果要渗透数学思想方法或科学的研究方法,往往会给我们一线教师带来很多困难。在这节课中,教师引导学生通过猜想验证结论三个流程进行研究,最后得到正确的数学结果,并进行应用。
当我们说要研究2、5的倍数的特征时,学生想当然地会认为只要一个数一个数地研究就可以了。如果让他们实际操作,他们很可能会写了几个数后,就下结论,当然这时候他们下的结论也很可能是正确的。大部分老师在这样的情况下,就会肯定学生的结论,然后进行练习巩固。
但是教师并没有满足于此,而是抱着科学严谨的态度。仅仅几个数就能得出结论了吗?答案显然是否定的,一项结论的得出不是这样草率的。如果教师如此这般教学,一次两次不要紧,长久以来,学生也会形成草率的态度,以偏概全,缺乏一种科学的严谨,这是很可怕的。
所以我们看到,首先教师引导学生确定了小范围的意识,在数据比较多的时候,我们可以先确定一个范围,在有限的时间里研究这个范围中的数的`特征,得到在1-100这个范围内5的倍数的特征,个位上的数字是5或0。这时候教师没有满足于此,而是引导学生认识到这个结论仅仅适用于1-100这个小范围,是不是在所有不等于0的自然数中都使用呢?还需要研究。所以接下来在教师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。只有进行了研究,才能得到正确的结论,最后在学习和生活中进行应用。
在这一过程中,学生感受到了科学严谨的态度,同时有了一定的范围意识,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。相信长此以往,学生会逐渐明确范围意识,建立科学严谨的态度的。
在教学2、5的倍数的特征之前,教师找了几个学生访谈,想了解学生学习的前在状态,当然所找的学生是各种层次都有的。对于2、5的倍数的特征,应该说比较简单,所以中等学生和优等生都已经知道了它们的特征2的倍数肯定是双数,5的倍数末尾是5或0,只有个别学困生一无所知。同时有个奇怪的现象,所有知道这个结论的同学都认为这个结论非常正确,以后就能用这个结论来进行判断,不需要进行验证,当然他们的结论获得也仅仅是知道的过程,没有经历探究过程。如果长此以往,学生仅仅是知识的接受者,而不是知识的探究者,以后将只习惯于被动接受,而不会主动发现。
所以,在教学中,当学生找到1-100内2和5的倍数特征时,教师追问学生,是不是比100大的自然数中,也有这个特征呢?学生异口同声地都认为是。这里就需要教师帮助学生养成严谨科学的学习态度。我们看到,教师告诉学生是不是有这个特征,我们没有研究过,所以只是我们的猜想。当教师一点拨后,大部分学生还是比较认可的。确实,没有经过研究,怎么能知道是呢?
有了这样的猜想,最后通过举例的方法验证后,学生没有找到反例,这时教师才告诉学生,一开始的猜想现在变成了结论。虽然同样是一句话,不同的时候有不同的界定,没有经过验证前,只是猜想;只有研究后,猜想才可能变成结论。
相信学生不断经历这种过程后,他们才会具备科学的态度,才会学会对自己所说的话负责,才不会贸然下结论,当然我们教师也要鼓励学生大胆猜想。
从这节课中,我们看到,当学生扩大范围,研究比100大的5的倍数的特征时,教师就引导可以用举例的方法来研究,寻找有没有不符合这一特征的例子,如果有,说明一开始的猜想是错误的;全班举了无数个例子,如果没有,那么在小学阶段,可以认为是正确的。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
随着时代的发展,随着新课改的不断深入,我们教师在制定教学目标时,不要再仅仅关注学生知识目标,更重要的是要关注学生的能力目标,只有从小培养,从小渗透,那么我们学生对数学的认识才会更深刻,也才会在数学上有更大的造诣。
篇5:因数和倍数的教学反思
1、对比新版教材知识设置与传统教材的区别。
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
2、相似概念的对比。【 】
(1)彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“x是x的因数”时,两者都只能是整数。
(2)“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。
篇6:因数和倍数的教学反思
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
我创设有效的数学学习情境,数形结合,变抽象为直观。首先根据一道应用题,通过对学生队伍的理解让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
篇7:因数和倍数教学反思博客
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点。
1.构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2、3、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2.在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握。
个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明。
抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点。
篇8:253的倍数的特征教学反思 3的倍数的特征教学目标
《3的倍数特征》进行了两次教学授课,第一次是新授,第二次是录课重复授课。下面就本节课前后两次上课进行如下反思:第一次上课,采用游戏的方式引入,提前给学生编号,根据编号做游戏。由于每个学生的编号不一样,所以在做游戏的时候,每个学生集中注意力,倾听游戏要求,激发了学生的学习兴趣。设置游戏的目的是复习2或5倍数的特征,同时,对3的倍数特征的学习产生求知欲。接下来是采用提出猜想,举出个例否定猜想来过渡。让学生充分地认识到依据2或5的倍数特征的思想已经行不通了,从而开始新的探索。在探索过程中借助“百数表”,让学生独立地圈出3的倍数,圈完后互相交流3的倍数的个位有什么特点,再次否定了之前的思维定式。由于个位上没有特点,所以引导学生从其他的角度观察,学生能想到横着观察、竖着观察,但对于斜着观察不能很好的发现,所以本节课中我关注到学生的思考困境,引导学生从斜着观察的角度思考探索。当学生斜着观察时能发现个位上的数字依次减1,十位上的数字依次加1,适时提出“什么是没有变的?”问题一提出,学生恍然大悟,发现:个位和十位上的数的和没有变!顺其自然的知道了3的倍数具有这样规律。经过研究每一斜行发现:个位和十位上的数的和不变,都是3的倍数。知道了这个规律后,下面开始延伸这个规律。一方面:验证百数表内其他不是3的倍数是否具有这个规律?另一方面:比100大的数,三位数、四位数、五位数等是否具有这个规律?通过两方面的验证,再次强调了这个规律是普遍存在的,而这时3的倍数特征已经归结为:一个数各位上的数的和是3的倍数,这个数就是3的倍数。知道了3的倍数特征之后通过练习巩固加强,练习的设计是三道题,这三道题设计为不同的层次,第一题是基础题,第二题是拔高题,第三题是解决问题。通过做题发现学生本节课掌握得不错。最后,对本节课的知识进行了延伸,通过出示课本第13页“你知道吗?”,让学生明白为什么2或5的倍数特征只看个位就可以了,而3的倍数特征需要看所有数位。从而达到学知识不但要知其然还要知其所以然。整个教学过程中,学生能在猜想、操作、验证、交流、归纳的数学活动中获得丰富的数学经验,同时这也有利于学生创造力的培养。通过本节课的教学以及学生的掌握情况,最终检测本节课的目标较好的达成。但反思这节课的不足,我觉得在每个环节上的过渡应该更加的自然。另外,在小组讨论的时候应多关注学生的交流,对学生进行适时地指导。基于第一节课的优点和不足,进行了第二次的授课即录课。由于学生们已经学习了过本节课,所以对于学生们来说已经是旧知识。要把旧知识重新来讲,如果照搬之前的授课方式已经远远不够了。如何更改,这给我提出来一个新的问题。为此,这节课我做了适当的调整。本节课我更多关注的是数学方法和思维方式的培养。其中体现在:
1、学生在举例验证猜想的时候,让学生体会反例的作用,如果有一个反例的存在,就说明猜想的结论是错误的。
2、在探索3的倍数特征时,对于100以内3的倍数,应如何着手验证,怎么选取数来验证,这一环节让学生体会:在研究规律的时候,优先选择数比较多的这一组,让学生明白如果有规律更容易探索和发现。
3、在拓展规律的.时候,采用举了大量的数据,证明了规律的普遍存在,让学生体会规律的适用范围。
4、在做练习的时候,第2小题,关注学生思考问题是否全面,关注学生的思考过程。
5、练习的第3小题,一道解决问题的题目,通过让学生读题、审题、分析题之后,再思考。这一道题学生展示了多种的做题方法,体现了方法的多样性,同时也说明学生的思维是活跃的。本节课中的不足,练习中第3题学生的做法没有完全的在黑板上板书,另外,本节课中学生会超前说出所有问题的答案,使得教师略显失措,我觉得这是因为我备学生还不够。在今后的教学中,我会改进自己的不足。我将更深入地研究教材、钻研教法,不断提高自己的教学水平,设计出学生更能接受和喜欢的课。
篇9:因数和倍数的教学反思
今天和孩子们一起学习了新的一节课《因数》,对于《因数》来说是孩子们第一册接触的知识,但是对于因数这个词来说,孩子们也并不陌生,因为在乘法算式中已经有了因数的一个初步的了解。所以对于本节课来说自己有如下的感受:
在教学的时候,我首先通过课本上飞机图的情景图让学生看图列算式,并且用现在自己五年级的思维来用不同的乘法算式来表示,这一环节对于学生列式来说是比较简单的,基本上所有的学生都能够很好的列出算是,然后根据学生列出的算式,引出因数和倍数的意义。在此环节的设计上由于方法的多样性,为不同思维的展现提供了空间,激发了学生的形象思维,而又借助“形”与“数”的关系,为接下来研究“因数与倍数”概念打下了良好基础,有效地实现了已有知识与新知识之间的联系。更好的分化了难点,让学生很轻松的接受了知识的形成。
在学生知道了因数和倍数的意义上,接下来出示了让学生自己动手找18的所有的因数。为了能够更好的、全面的找到18的所有因数,让同桌两人互相合作来完成。通过教学发现学生的合作能力很强,能够用数学语言来准确的表述,而且大多数学生在合作的过程中也能很好的找到、找全18的所有的因数。
在最后的环节中我设计了不同层次的练习,先让学生说说有关因数和倍数的意义的一些练习题,加深对知识点的理解,主要是让学生明白因数和倍数不是单独存在的,是相互已存的,必须要说清楚是谁是谁的因数、谁是谁的倍数。通过教学来看学生掌握的还算可以。接着出示了让学生找不同数的因数,在这个环节的设计用了不同的形式,比如:找朋友,你来说我来做,比一比说最快等形式来帮助学生理解知识,在此过程中学生很感兴趣,激情很好课堂气氛热烈,也让学生在轻松的氛围中体验到学习的快乐。
1、在本节课的教学上还是存在很多哦不足之处,虽然自己也知道新课标提出要以学生为主体,老师只是引导着和合作者,可是在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。如在教学找18的因数这一环节时,由于担心孩子们是第一次接触因数,对于因数的概念不够了解,而犯这样或那样的错误,所以引导的过多讲解的过细,因此给他们自主探究的空间太小了,没能很好的体现学生的主体性。
2、这堂课我的个人语言过于贫乏和随意,数学是严谨的,随意性的语言会对学生的学习理解造成一定的影响。另外课堂评价性的语言也不多,可以说是几乎没有。因此在今后的教学中我要积极向其他老师学习,多走进优秀教师的课堂,多学多问。而且自己也要把握好各种学习机会,不断的学习,也要多反思认真分析教学中出现的问题,通过不断地反思提高自己业务水平。希望自己也能越来越好!
篇10:因数和倍数的教学反思
在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。在课堂中,我主要围绕以下几方面来进行教学:
(1)捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。
在教学时,我设计了这样一个母女间的关系:小华的妈妈是李英,李英的女儿是小华。
通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮助学生理解了因数倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。
(2)角色转换,让学生亲身体验数和数之间的联系。
因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。因而,我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课学生都沉浸在自己的角色体验中,学生都把自己当成了一个数。通过对自己一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。
(3)数形结合,让学生带着已有知识走进数学课堂。
“数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象:
师:首先,先请大家闭上眼睛,我们一起来想象。有一个长方形,它的长和宽都是整数,它的面积是12,那长和宽可能是多少呢?想好了就可以把眼睛睁开。
生1:长是6,宽是2。
生2:长是4,宽是3。
生3:长是12,宽是1。
师:长是7行吗?为什么?
生:不行,因为找不到一个整数与7相乘得12。
师:7不行,长是8行吗?
生:不行。
由于学生对于长方形的面积=长×宽这个知识非常熟悉,我创新使用教材,在学生已有知识的基础上,让学生想象长和宽的情况,并通过“反正法”:长是7行吗?为什么?让学生充分的想象和思考,从而渗透“整数”的含义,这时数和形也在学生头脑中有机结合。同时借助多媒体手段将长方形面积与长、宽的关系更直观、形象的表现出来。这个过程也正好渗透了找一个数因数的方法,便于学生理解和掌握概念。这样较好地把握了教学的起点,学生由已知走向未知的课堂,为后面教学的展开做好了铺垫。
(4)重组教材,根据学生的实际情况,多种形式探究找因数倍数的方法。
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。
(5)收放有度,处理好讲授与探究的关系。
讲授与探究是不相矛盾的,接受与发现对学生来说都是有益的学习方法。在数学知识领域,有许多内容是人为规定的,这时教师就要发挥“传道”的作用。比如本节课初步介绍因数和倍数的概念时,我采用讲授的方法,帮助学生初步建立概念。
师:看来两个整数相乘等于12只有这3种情况。那在这里,4,3,6,2,12,1就与12有着特殊的关系。在数学上,像4×3=12,这时4就是12的因数,12就是4的倍数。今天我们就来研究因数和倍数。因数和倍数是研究两个整数之间的关系,为了研究方便一般不包括0。
师:刚才我们说了4和12的关系,那3和12又有什么关系呢?谁来说?
这时学生只是停留在“以葫芦画瓢”的思维状态中,关键是由表及里地理解因数和倍数的关系以及找因数、倍数的方法。因而后面的教学我大胆放手,通过对15、18、20、24几个具体数的研究,让学生逐步有顺序、有规律的找出它的全部因数、倍数,进而用自己的语言概括找因数、倍数的方法。
篇11:因数和倍数的教学反思
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点,同时学会整理知识的方法更是本节课教学的灵魂。
成功之处:
1、构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2的倍数特征、3的倍数特征、5的倍数的`特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2、教给学生整理知识的方法。在教学中,是授人以鱼不如授人以渔,作为教师莫过于教给学生必备的学习方法。在这节课的整理复习中,课前我让学生把第二单元的关于因数和倍数的概念进行了汇总,涉及的概念有如下几个:因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、奇数、偶数、2的倍数特征、3的倍数特征、5的倍数特征,并提出具体的要求:一是观察分析这些概念,哪些概念之间有着密切的联系;二是根据这些概念之间的紧密联系可以分为几类;三是用你自己喜欢的方法表示出来,可以以数学手抄报的形式来呈现。通过课前的设计,我事先搜集了一些有代表性的作品放在课件中,让同学们进行欣赏,相互取长补短,共同学习,共同进步。课堂中在小组讨论交流的过程后,教师与学生共同对本单元的概念进行了整理和总结,并得出知识网络图。
纵观本节课的设计,就是通过学生的联想,回忆前面学过的知识,并在头脑中构建知识之间的相互联系,从而揭示出这个知识网络图就是思维导图。掌握了这种方法,就可以把数学中的每一个单元进行整理,也可以把每一册知识进行整理,还可以把小学数学的知识进行系统的整理,从而让学生体会到思维导图方法的强大之处,学生在感叹这种方法的魅力同时,并把这种方法推广到其它学科,让学生真正掌握知识整理的方法,并在以后的单元知识整理中加以运用。
3、在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握,学生在练习的过程中不仅掌握了知识整理的方法,还深刻地理解了知识的来龙去脉,对每个知识点的概念理解也更加清晰了,起到了复习回顾旧知识的作用。
不足之处:
1、个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明,在这一点上教师还要加以引导。
2、出现个别学生由于第二单元的知识是在开学初学习的,有些知识点已经遗忘,导致出现连最小的偶数是几都不知道了,因此在学完每个单元后要不间断的进行知识的巩固和练习。
3、由于本节课的知识点过于多,练习的时间有些不足,导致基本的练习时间可以保障,但是需要拓展的知识没有更好的呈现出来。
再教设计:
1、抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点,注意引导学生从数学的本质去思考问题,排除数学本质以外的东西,去引发思考,从而形成良好的数学思维品质。
2、还要继续深入挖掘数学的思想、灵魂和方法,用以指导课堂教学,让学生掌握以后学习知识的钥匙,学会开启知识的大门。
篇12:253的倍数的特征教学反思 3的倍数的特征教学目标
课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……
课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?
(与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)
师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?
生:只和一个数的个位有关。
师:与今天学习的知识比较一下,你有什么疑问吗?
生1:为什么判断一个数是不是3的倍数只看个位不行?
生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?
……
师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。
(学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)
生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。
生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。
师:同学们想到用“拆数”的方法来研究,是个好办法。
生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。
生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。
生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。
生(部分):对。
生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?
生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。
师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?
学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。
师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?
生1:我想知道4的倍数有什么特征?
生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。
师:你能把学到的方法及时应用,非常棒!
生3:7或9的倍数有什么特征呢?
……
师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。
1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的`思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
篇13:因数和倍数的教学反思
1、 使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、 使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
智力题:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?
教师说明:人和人之间是有联系的,数和数之间也是有联系的。(板书:数和数)
1、创设情境。
用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。
学生汇报拼法,教师依次展示长方形的拼图,并板书:
篇14:253的倍数的特征教学反思 3的倍数的特征教学目标
《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
篇15:253的倍数的特征教学反思 3的倍数的特征教学目标
:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。
:先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。
在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
篇16:253的倍数的特征教学反思 3的倍数的特征教学目标
3的倍数的特征的教学与2、5倍数的特征难度上有不同,因为2、5的倍数的特征从数的表面的特点就可以很容易看出(根据个位数的特点就可以判断出来),但是3的倍数的特征却不能从表面去判断,因而我特设以下环节突破重难点预习题。
1、给出一些数让学生先判断哪些数是3的倍数。并让学生说一说你是怎么判断的?
2、从以上的3的倍数进行思考:
(1)、3的倍数与它个位上的数有关系吗?
(2)、 3的倍数的各位上的数的.和都是3的倍数吗?
新课时让学生从上面的练习中去发现了什么,从而归纳3的倍数的特征:一个数的各个数位上的数字和是3的倍数,这个数就是3的倍数
然后再让每个同学任意写一个3的倍数,再看看这个数的各个数位上的数的和是不是3的倍数。要求学生说出方法和思路。
经过以上这些活动后学生都能对一个数是不是3的倍数进行简单的判断。特别是学生对3的倍数特征的判断大多数的学生能先求出各个数位的数字之和是不是3的倍数,然后再进行判断,效果很好。
篇17:253的倍数特征教学反思
传统的教法,可按作者两次经过鸟的天堂的所见所闻展开,先学第一次只见到勃勃生机的大榕树,但没有见到一只鸟,再读第二次看到了鸟儿翻飞,鸟声悠扬的场面;或者围绕“为何能成为鸟的天堂?”的两个因素展开教学。本课设计时以读、悟、说为基本思想,把“榕树”与“鸟儿”放在等同的位置上加以品味,教学设计重视语感的培养,突出语文的人文性。因此,本节课的教学目标确定为:1、感受榕树的勃勃生机和“鸟儿翻飞”、“鸟声悠扬”的场面。2、有感情地朗读课文,培养语感。3、初步学会换位思考,养成辩证思维的习惯。其教学过程根据课文特点、单元训练重点和多媒体课件的特点,从培养学生“自主感悟,发展语感”出发,主要以朗读感受、自主感悟、换位再读再悟、拓展延伸几个环节来展开。
朗读感悟第一课时教学后学生对课文内容已有了一定的了解,因此,本节课的重点是研读二、三段,即作者两次经过鸟的天堂时看到的不同景象,在回顾课文内容后,让学生挑选出描写榕树与鸟儿的段落来读。在读、评的过程中,学生对这些重点段落有了整体的感悟。
自主感悟在这一环节的教学中,采用学生自主选择(在描写榕树与鸟的段落中任选其一)、自主研读(品味描写榕树或鸟的语言文字)、自主感悟(用第一人称介绍榕树或鸟的魅力)的方法,积极引导,激发学生的阅读兴趣。在教学中,让学生分别以“树”和“鸟”的身份赞美自己,从中培养自尊、自爱、自信,使每个学生的聪慧、可爱、悟性和灵气都表露了出来,做到了人文一致,人文合璧;让学生始终有积极的阅读心理,从读中感受到榕树的勃勃生机和“鸟儿翻飞”、“鸟声悠扬”的场面,从中获得了愉悦,获得了对人生价值的感悟,获得了人文精神的升华。
换位整和、再悟教学时,引导学生深究榕树与鸟的关系,进而互换角色,进行再读再悟,使学生从整体上感悟、了解“鸟的天堂”的含义,使学生同时学会欣赏别人,我即是树,你即是鸟,树和鸟互相欣赏形成整体;我和你也互相欣赏,互助互励,让学生真正做到了认识自我,欣赏别人。这里渗透了换位思考的意识,让学生从小养成辩证地、全面地看问题的习惯。这样处理既基于教材,又超越教材,为学生人生的光彩涂了一层亮丽的底色。
拓展延伸我以课文内容“一只小画眉站在一根小枝上兴奋的唱着,它的歌声真好听”引导学生想像。让他们围绕“如果你是小画眉,你会唱些什么?”进行交流,引导学生经历从读到悟,最后到表达的一个完整的语言文字学习过程。
朗读训练这是本课另一个较成功之处,主要采用自主朗读,谈感悟的方法。《鸟的天堂》这篇课文语言质朴,意境优美,感情真挚,很适合学生自己去体会,去领悟。我抓住写树和鸟的几个重点段落的阅读,从“分”到“合”,让学生充分感受“树”和“鸟”互相依存的融洽关系,感悟大自然中无处不在的整体和谐性,使学生实现了一次人文精神的升华,进一步体现了《语文课程标准》的理念,尊重学生,发扬民主,张扬个性,把更多的空间和时间让给学生,让学生自己去揣摩,去感悟。因此,我这样引导学生学习:
1、抓段落,谈感悟。在学生整体感知课文的基础上,鼓励学生畅所欲言,各抒己见,说说喜欢榕树还是鸟儿,并陈述自己喜欢的原因。
2、抓句子,谈感悟。在学生畅谈喜欢段落的基础上,先引导学生找出自己喜欢的句子,反复阅读,细细品味,从文章的字里行间去寻找美。再组织学生讨论,来谈感受,谈见解,在交流中,去再现生机勃勃的大榕树,去再现鸟儿在枝头欢唱,去感受美的画面、美的韵律、美的语言、美的生命、美的情感……
3、抓品读,促感悟。这是一篇训练学生朗读的好课文。在教学引导学生“品读”。让学生自己选择喜欢的段落,自已朗读,自己感受是否读出了作者所要表达的情感,然后在小组中读,推荐读等。
篇18:因数和倍数的教学反思
1、立足于学生的思维特点。中年级学生的思维特点是由具体形象思维到抽象概括思维过渡的重要年龄段。因此,我放弃了用12个小正方形摆长方形的动手实践活动,而选用了看12个小正方形在脑中想象摆法。在留有短暂时间让学生思考,脑中逐渐有了长方形的图象纷纷举手之后,我又不急于提问,而是追问:你能不能用一道乘法算式来表示?当学生说出乘法算式时,也不急于就此,还让其余同学想想他是如何摆的,做到全员参与。这种由形象到抽象,再由抽象到形象的过程,是符合学生的思维特点的,对于发展学生的抽象概括思维是有利的。
2、层层辅垫,为学生自主探索打下了坚实的基础。探索36的所有因数是本节课的重难点,我在这之前做了层层的辅垫。
(1)3个乘法算式的呈现我作了调整:1×12=12,2×6=12,3×4=12。潜移默化的影响学生的有序思考。
(2)在学生根据其余两算式说因数和倍数的关系之后,我对12的所有因数进行了小结:12的因数有1,12,2,6,3,4。让学生感受到一道乘法算式中蕴藏着两个因数。
(3)36这个数比较大,学生找起36的所有因数时有点困难,我设计了从3,5,18,20,36五个数中选择两个数来说说谁是谁的因数,谁是谁的倍数?这一教学环节,减轻了学生的困难,同时也能检验学生对因数和倍数概念是否已正确认识。当学生会说3是36的因数,36是3的倍数时,说明他们脑中已经有了判断的依据:3×12=36。
(4)在学生独立探索前,我又提醒学生,在找36的所有因数时,如果遇到困难,不要忘了我们已经寻找过12这个数的所有因数,可以作为参考。
这四个方面的准备,学生的独立思考才有了思维的依托,遇到困难,他们就会自我想办法,自我解决问题,这样的探索就会有效,不会浮于表面,流于形势。
3、有层次的呈现作业,给学生以正面引导为主。在概括总结找36所有因数的方法时,我找了三份的作业,第一份是有序,成对思考的1,36,2,18,3,12,4,9,6。在交流中让学生明确只有有序的,成对的思考才会做到既不遗漏,又能快捷方便,第二份作业是所有的因数按顺序排列的1,2,3,4,6,9,12,18,36。结果作业中漏了一个4,这是个时机,在表扬了这个学生能按顺序的排列,做到美观这个优点之后,提出问题:美中不足的是什么?学生:一个一个找麻烦,还容易丢。我接着追问;我们能给他提些建议吗?第三份是无序的有遗漏的,也让学生给他提建议,让他也能做到一个不漏。这三份作业对比下来,先教给学生正确的思考方法,再以正确的方法判断其他同学思考不当的地方,并提出建议。寻找一个数所有因数的方法也能深刻地印在学生脑里。
4、大胆放手,产生矛盾冲突,发现问题,想办法解决问题。在找3的倍数时,我想学生有了前面的学习基础,我直接抛出问题:你能像上面这样有序的从小到大的找出3的倍数吗?学生在找中发现:3的倍数有很多,写不完。我追问;那怎么办,有办法吗?通过一会儿的沉默思考后,纷纷有学生提出省略号。
5、趣味练习,联想,探索。练习中我设计了两道题,一是猜我的电话号码,激发起学生的兴趣,二是探索计数器的奥秘,多位老师问起我的设计意图,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉,牛顿看到苹果落地,通过联想,最终发现了万有引力定律,瓦特看到茶壶里冒出蒸气,通过联想,最终发明了蒸气机…这与一个人的认真观察,善于联想,勇于探索是分不开的。
篇19:因数和倍数的教学反思
开学后上第一节课年级组教研课,挺有压力的。毕竟放了这么久的假,感觉有点不习惯,好象字都写不稳一样。还好,上完课后感觉还可以。
因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“3×4= 12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。
为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。
针对这节课,课后老师们就这堂课认真评析,真诚的说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。
这几点既是目标也是方向,相信我们在新的一学期,团结协作,勤奋务实,努力朝着目标前进。
篇20:因数和倍数的教学反思
《倍数和因数》这一资料与原先教材比有了很大的不一样,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而此刻是在未认识整除的状况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现带给足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不一样的长方形,再让学生写出不一样的乘法算式,借助乘法算式引出因数和倍数的好处。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而构成因数与倍数的好处。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的好处,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
新课程提出了合作学习的学习方式,教学中的多次合作不仅仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习潜力,初步构成合作与竞争的意识。
找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时光,最后就没有很多的时光去练习,我认为虽然时光用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有必须困难,那里能够充分发挥小组学习的优势。先让学生自我独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按必须的次序进行。之后让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自我刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
练习的设计不仅仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地理解。教学之前我明白这节课时光会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时光安排的能够少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时光,直接出示,,实际效果我认为是比较理想的。课上还就应及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自我的发现:最小的因数是1,最大的因数是它本身。教师就应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。