七年级数学代数式教案【优秀20篇】
最好的一种教学,牢牢记住学校教材和实际经验二者相互联系的必要性,使学生养成一种态度,习惯于寻找这两方面的接触点和相互的关系。今天小编为大家整理了一份七年级数学代数式教案,供大家阅读参考。
浏览
1349范文
78七年级上册数学教案免费
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
正数和负数概念
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读p2的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
1. p3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
更多相似范文
篇1:初一上册数学《正数和负数》教案优秀范文
教
学
目
标
知识与技能
1 了解正数与负数是实际生活的需要。
2 会判断一个数是正数还是负数。
3 会用正、负数表示具有相反意义的量。
过程与方法
通过正、负数学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
情感态度与价值观
1 通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并服务于生活。
2 通过正、负数的学习,渗透对立统一的辩证思想。
教材分析
教学重点
负数的引入
教学难点
会判断正数、负数,运用正、负数表示相反意义的量,理解0表示量的意义。
教学过程
教师活动
学生活动
备注(教学目的、时间分配等)
1 新课导入
珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米,它们是什么意思呢?
2正、负数的概念导入
引入例题
答题比赛:规则甲乙两人每人必答五道题,答对一道记10分,答错一道扣10分,不答得0分。最后得分,高者胜出。
交流讨论:
计算甲乙最后得分。
通过活动,你是否有新的发现?
3分
5分
教师活动
学生活动
备注(教学目的、时间分配等)
甲:对,对,对,错,错
乙:错,对,错,错,不答。
3 正数:大于0的数叫做正数。
4 负数:在正数前面加上负号叫做负数。
5 零既不是正数,也不是负数。
例1 读出下列各数,并指出其中哪些是正数,负数。
-2,0、5,+7,0,—3、14,-1、6
例2 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况的:
美国减少6.4%,德国增长1.3%
法国减少2.4%,英国减少3.5%
意大利增长0.2%,中国增长7.5%
例3 2010年5月1日至10月31日期间,在中国上海市成功举行以城市,让生活更美好为主题的第41届博览会,这是由中国举办的首届世界博览会。总收入620亿人民币表示为+620亿人民币,那么总投资{总支出}450亿人民币表示为---------亿
书后练习
课堂小结
作业P51.2.
学生举例正数、负数。
为了明确表达意义,在正数前面加上“+”(正)号。
10分
5分
6分
5分
8分
2分
1分
板书
正数概念 例1 例3
负数概念 例2
篇2:彩课堂七年级上册数学课件
一、教学目标
1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。2、过程与方法目标:(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二)小组合作交流,探究新知
1、观察下图,回答问题:(五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)
(1)4,-4; (2)0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|=,
1=,|+8.2|=; 5(2)|-3|=,|-0.2|=,|-8|=.(3)|0|=;
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、(1)在数轴上表示下列各数,并比较它们的大小:
篇3:华师大七年级数学上册教案设计
1:教材所处的地位和作用:
本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:
(1)知识目标:
(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(b)
通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法
2:图表分析法
3:教学过程中坚持启发式教学的原则
教学的理论依据是:
1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。
2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表
示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有x千克面粉”写成“设原来有x”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“x”“—15%x”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。
篇4:初一上册数学《有理数》教案精选范文
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:会把所给的各数填入它所属于的集合里
教学方法:问题引导法
学习方法:自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数: ;正整数: 、负整数: 、正分数: 、负分数:
.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …} 负数集合:{ …}
正整数集合:{ … } 负分数集合:{ …}
4.下列说法正确的是( )
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
篇5:七年级上册数学教案免费 七年级上册数学教案青岛版
1、有理数的分类
知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。
2、数轴
知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数
3、相反数
知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4、绝对值
知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a
1、有理数的加法
知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)
多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2、有理数的减法
知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3、有理数的加减混合运算
知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。
4、有理数的乘法
知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。
乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5、有理数的除法
知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。
除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。
注意:倒数与相反数的区别
6、有理数的乘方
知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。
乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。
7、有理数的混合运算
知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。
技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。
篇6:彩课堂七年级上册数学课件
《余角和补角》第2课时教案
教学目标:
知识与能力
能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法
能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:方位角的表示方法。
教学难点:方位角的准确表示。
教学准备:预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程;
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线oa、ob所表示的方向。
(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?
(小组讨论,个别回答,教师总结)
例3如图,货轮o在航行过程中发现灯塔a在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮b,货轮c和海岛d,仿照表示灯塔方位的方法,画出表示客轮b、货轮c、海岛d方向的射线。
(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。
(1)请按比例尺1:200000画出图形。
(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的方向和进度。
(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点a在点o的北偏东30°的方向上,离点o的距离为3cm。
(2)点b在点o的南偏西60°的方向上,离点o的距离为4cm。
(3)点c在点o的西北方向上,同时在点b的正北方向上。
篇7:七年级数学下册教案
教学目标:
知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
能力目标:进一步培养学生分析、归纳和探索能力。
情感目标:培养学生数形结合的思想。
教学重难点:公式的应用及推广。
教学过程:
一、复习提问:
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,
这样裁开后才能重新拼成一个矩形。
(3)比较(1)(2)的结果,你能验证平方差公式吗?
学生讨论,自己得出结果
2.(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.
3.判断正误:
(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)
二、新课:
运用平方差公式计算:
(1)102×98;(2)(y+2)(y2)(y2+4).
填空:
(1)a24=(a+2)();(2)25(☆azuowen.comn.cn)x2=(5x)();(3)m2n2=()();
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
篇8:初中七年级数学经典教案
学习目标:
1、通过学生自学提问、探索讨论的方法,使学生初步了解计算器面板上的按健名称和功能。
2、了解计算器的形状、款式、功能不同的基础上,学会计算器的基本操作方法、并能进行简单的四则计算。
3、培养学生运用计算器解决生活中的实际问题,培养学生的运用意识和解决问题的能力。
4、在自主探究的学习过程中培养学生的问题意识和创新意识。在解决实际问题中,渗透节约、环保等诸方面意识。
学习重点、难点:
介绍常用键的功能和使用方法。
设计理念:
《数学课程标准》指出:数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上。学生是数学学习的主人,教师是学生学习的组织者、引导者与合作者。计算器是如今生活中经常用到的计算工具,对学生来说并不陌生,所以教学中我让学生根据自带的计算器,结合教学目标自学课本,让学生在看一看、摸一摸、想一想、议一议的过程中认识计算器,学会基本操作方法,并在应用中感受到计算器带来的方便,体会到运用计算器解决实际问题时所带来的成功的快乐。
教具、学具准备:
1、每个学生自备一个计算器。
2、教师的计算器,实物投影仪,课件,多媒体
教学过程:
一、 创设情境
师:同学们,你们经常去超市吗?我昨天也去了超市,并选购了好多东西,可是,要到付款的时候,我有点犹豫,我就带了1000元钱,也不知道够不够,这时如果是你,你会怎么办?(算一算)
师:怎么才能又准确又快地算也来呢,你想到了什么计算工具?(计算器)
师:在日常生活中,你还在哪见过计算器?它们有什么作用?
师:小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器。
二、学习用计算器计算
1、了解计算器的结构
(1)师:你了解计算器吗?假如你是一位计算器推销员,你打算怎样介绍你手中的这款计算器的构造?(板书:面板、显示器、键盘)
键盘里有哪些键?(板书:数字键、运算符号键、功能键)
这个点是什么意思?(点出开机、关机、删除)
(2)请一生介绍自己的计算器(实物投影)
② 小组内学生相互介绍自己的计算器。
③展示文曲星、商务通
(3)师:文曲星、商务通的主要功能不是计算,但它们也有计算功能,可以作为计算器来使用。
2、过渡指出:各种不同的计算器的功能和操作方法也不完全相同,因此在使用前一定要先看使用说明书。但对于一些简单的操作,方法还是相同的,象开机按?关机按?
3、学习计算器的操作
(1)师:大家认识了计算器,你会操作它吗?试试!准备好了吗?(请你把计算结果记录在草稿本上)
(2)小黑板出示:
75+47= 24×7.6= 6.28-0.95=
(3)同桌之间说说你是怎样用计算器计算这三题的。
(4)指名学生上演示(实物投影)
(5)问:6.28-0.95的操作有不一样的吗?
用新方法操作,学生齐操作。
(6)师:通过计算这三题,我们可以发现,用计算器计算时只从左往右依次按键就可以了。
篇9:初一上册数学《有理数》教案精选范文
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5.
1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.
1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)
分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业 1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
篇10:初中七年级上册数学《从算式到方程》教案
1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列 出方程.
2.理解方程、一元一次方程的定义及解的概念.
3.掌握检验某个数值是不是方程的解的方法.
阅读教材P78~80,思考下列问题.
什么是方程、一元一次方程及它们的 解?怎样列方程?
知识探究
1.含有未知数的等式叫方程.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.
2.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.
自学反馈
根据下面实际问题中的数量关系,设未知数列出方程:
1.用一根长为2 4 cm的铁丝围成一个正方形,正方形的边长为多少?
解:设正方形的边长为` cm,列方程得:4`=24.
2.某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:设这个学校的学生数为`,则女生数为52%`,男生数为52%`-80,依 题意得方程:52%`+52%`-80=`.
3.练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?
解:设小明买了`本,列方程得:0.8`=10-4.4.
4.长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.
解:设长为`cm,则宽为(`-2)cm,依题意得方程:2(`+`-2)=24.
先设未知数,再找相等关系,列方程.[来源:学+科+网Z+`+`+K]
活动1小组讨论
例1判断下列是不是一元一次方程,是打“√”,不是打“×”.
①`+3=4;(√)
②-2`+3=1;(√)
③2`+13=6-y;(×)
④1`=6;(×)
⑤2`-8>-10;(×)
⑥3+4`=7`.(√)
例2检验2和-3是否为方程`-52-1=`-2的解.
解:-3是,2不是.
带入方程中左右两边相等的值就是方程的解.
例3设未知数列出方程:
(1)用一根长为100 cm的铁丝围成一个正方形,正方形的边长为多少?
(2)长方形的周长为40 cm,长比宽 多3 cm,求长和宽分别是多少.
(3)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?
(4)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小车的平均速度.
解:略.
设未知数,找等量关系,用方程表示简单实际问题中的相等关系.
活动2跟踪训练
1.下列方程的解为`=2的是(C)
A.5-`=2
B.3`-1=4-2`
C.3-(`-1)=2`-2
D.`-4=5`-2
2.在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(A)
A.1个B.2个C.3个D.4个
3.老师要求把一篇有2 000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)
解:设小华要`分钟完成,由题意,得
50`+700=2 000,
`=26.
活动3课堂小结
1.方程及一元一次方程的定义.
2.如何列方程,什么是方程的解.
3.1.2等式的性质
1.了解等式的两条性质.
2.会用等式的性质解简单的一元一次方程.
阅读教材P81~82,思考下列问题.
1.等式的性质有哪几条?用字母怎样表示?字母代表什么?
2.解方程的依据是什么?
知识探究
1.如果a=b,那么a±c=b±c(字母a、b、c可以表示具体的数,也可以表示一个式子).
2.如果a=b,那么ac=bc.
3.如果a=b(c≠0),那么ac=bc.
自学反馈
1.已知a=b,请用“=”或“≠”填空:
(1)3a=3b;(2)a4=b4;(3)-5a=-5b.
2.利用等式的性质解下列方程:
(1)`+7=26;
(2)- 5`=20;
(3)-2(`+1)=10.
解:(1)`=19.(2)`=-4.(3)`=-6.[来源:学_科_网]
注意用等式的性质对方程进行逐步变形,最终可变形为“`=a”的形式.
活动1小组讨论
例利用等式的性质解下列方程并检 验:
(1)`-9 =6;
(2)-0.2`=10;
(3)3-13`=2;
(4)-2`+1=0;
(5)4(`+1)=-20.
解:(1)`=15.(2)`=-50.(3)`=3.(4)`=12.(5)`=-6.
运用等式的性质解方程不能漏掉某一边或某一项.
活动2跟踪训练
利用等式的性质解下列方程并检验:
(1)`+5=8;[来源:学|科|网Z|`|`|K]
(2)-`-1=0;[来源:学+科+网Z+`+`+K]
(3)-2-14`=2;
(4)6`-2=0.
解:(1)`=3.(2)`=-1.(3)=-16.(4)`=13 .
活动3课堂小 结
1.等式有哪些性质?
2.在用等式的性质解方程时要注意什么?
会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题.
阅读教材P104~105探究3的内容,思考题中所提出的问题.
知识探究
方案决策问题解题的基本方法是求得每种方案的结果,再结合结果做出判断.[来源:学科网]
自学反馈
某市乘公交车(非空调)每次需投币1.5元或者购买IC卡,每次刷卡扣款1.35元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一 样?当超过这个次数后哪种收费方 式较合算?[来源:Z``k.Com]
解:100次,购买IC卡合算.
活动1小组讨论
例(教 材P104探究3)电话计费问题
下表中有两种移动电话计费方式.
月使用
费/元 主叫限定
时间/min 主叫超时
费/(元/min) 被叫
方式一 58 150 0.25 免费
方式二 88 350 0.19 免费
考虑下列问题:
(1)设一个月 用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费;
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
活动2跟踪训练
某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?
解:60吨,用第二种结算方法可多拿工 资.
活动3课堂小结
电话计费等有关的方案决策问题.
篇11:初中七年级上册数学《整式》教案优质范文
整式的加减是承续有理数的加减、乘、除、乘方的运算,进行整式方程的一系列运算,是学生从小学进入初中含有字母运算的变化,认知上有新的突破,在教法引入过渡中,有其奥妙学法教法值得反思。
一、注意与小学相关内容的衔接
整式及其相关概念和整式的加减运算,与列代数式表示数量关系密切联系,而同整式表示数量关系是建立在同字母表示数的基础上的,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的数量关系和简单方程。这些知识是学习本章的直接基础。因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。
二、加强与实际的联系
在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,加强了与实际的联系,无论是概念引出,还是运算法则的探讨,都是紧密结合实际问题展示的,在教学中,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。
三、类比数学习式,加强知识的内在联系,重视教学思想方法的渗透
整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,关于整式的运算与数的运算具有一致性,数的运算是式的运算的特殊情况,由于学生已经学习了有理数的运算,能够灵活运用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。
四、抓住重点,加强练习,打好基础
整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。
篇12:初中七年级上册数学《解一元一次方程》教案优质范文
教材分析:
《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:
《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:
复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算
巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况
作业布置、反馈情况。
教学目标:
1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
教学难点:分析实际问题中的相等关系,列出方程。
教学方法:先学后教,当堂训练。
教学准备:多媒体课件等。
预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。
教学过程:
一、准备阶段:
1、知识回顾:
(1)、用合并同类项的方法解一元一次方程的步骤是什么?
(2)、解下列方程:
① -3·-2·=10 ②
2、创设问题情境,导入新课。
问题:
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?
如何解决这个问题呢?
二、导学阶段:
(一)、出示本节课的学习目标:
1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;
2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
(二)、合作交流,探究新知
1、分析解决课前提出的问题。
问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?
分析: 设这个班有·名学生.
每人分3本,共分出___本,加上剩余的20本,这批书共____________本.
每人分4本,需要______本,减去缺的25本,这批书共____________本.
这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
这批书的总数是一个定值,表示它的两个式子应相等,
即表示同一个量的两个不同的式子相等.
根据这一相等关系列得方程:
方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?
方法过程:
2、总结移项的概念。
像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .
3、思考:上面解方程中“移项”起到了什么作用?
4、例题学习
运用移项的方法解下列方程:
三、课堂练习:
运用移项的方法解下列方程:
四、课堂小结:
本节课,我们学习了哪些知识?你还有哪些困惑?
五、达标测试:
运用移项的方法解下列方程:(25′×4=100′)
六、预习作业:
1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;
2、课后作业:(1)
篇13:七年级上册数学《整式的加减》教案精选范文
教学目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴5个人+8个人=
⑵5只羊+8只羊=
⑶5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms)。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。(板书课题:同类项。)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
2.例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。 ( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不同,误认为不是同类项。)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。[来源:学|科|网Z|X|X|K]
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)
例3:指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项。
例4:k取何值时,3xky与-x2y是同类项?
解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即 k=2。所以当k=2时,3xky与-x2y是同类项。
例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(s-t)、(s+t)分别看作一个整体。)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。)
6.五分钟测试:
1、请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)
三、课堂小结:[
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)
四、课堂作业:
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是______。
板书设计:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。
篇14:七年级数学下册教学设计
教学目标:
1.会用代入法解二元一次方程组。
2.初步体会解二元一次方程组的基本思想――“消元”。
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神。
重点:
用代入消元法解二元一次方程组。
难点:
探索如何用代入法将“二元”转化为“一元”的消元过程。
教学过程:
复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?
解:设这个队胜x场,根据题意得
解得
x=18
则 20-x=2
答:这个队胜18场,负2场。
新课:
在上述问题中,我们可以设出两个未知数,列出二元一次方程组
设胜的场数是x,负的场数是y,
x+y=20
2x+y=38
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程
2x+y=38的y换为20-x,这个方程就化为一元一次方程。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
例1 把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3 (2)3x+y-1=0
例2 用代入法解方程组
x-y=3 ①
3x-8y=14 ②
例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。
(2)把(1)中所得的方程代入另一个方程,消去一个未知数。
(3)解所得到的一元一次方程,求得一个未知数的值。
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。
作业:
教科书第98页第3题
第4题
篇15:初中七年级上册数学《整式》教案优质范文
一、教学目标。
1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。
2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。
3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。
二、教学设想。
本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。
三、教材分析。
本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。
四、重点,难点。
1、教学重点:单项式,单项式系数及单项式次数概念。
2、教学难点:区别单项式的系数和次数。
五、教学方法。
通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。
六、教学过程。
(一)创设情境,激趣导入。
问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?
根据速度,时间和路程的关系:路程=速度·时间则
它2小时行驶的路程:100·2=200(千米),
它3小时行驶的路程:100·3=300(千米),
它t小时行驶的路程:100·t=100t(千米),
字母t表示时间,用含有字母t的式子100t表示路程。
问题2:用含有字母的式子填空。解答教科书第54面思考题。
(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。
(二)合作交流,探索新知。
1、单项式概念的探索。
(1)以上几个式子有什么共同特征:
6a2是6×a×a的乘积。
a3是a×a×a的乘积。
2.5x是2.5×x的乘积。
vt是v×t的乘积。
-n是-1×n的乘积。
归纳:都表示数与字母的积。
(2)引出单项式的概念:
①教学活动:
倾听、思考、分析、思考。
②师生互动:
列式解答、倾听、理解、思考、归纳。
倾听、理解概念、举例集体评议。
③学生活动:
从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。
培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。
培养学生的分析,思考及归纳能力,加深对概念的了解.
培养学生的评价能力,为概念的引出.
(3)让学生举出单项式的例子。
2、单项式系数和次数的探索。
问题1:以上单项式有什么结构特点。
由数字因数和字母因数两部分组成。
问题2:分别说出它们的数字因数和各字母的指数。
单项式中的数字因数,叫做单项式的系数。
一个单项式中,所有字母的指数的和,叫做这个单项式的次数。
交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。
教师巡视指导,请各别学生展示交流成果。
3,例题教学
教科书55页例1
学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。
(三)练习巩固,熟练技能。
1、教科书第56页练习第1,2题。
2、下列各式:-x+3,6x,其中是单项式的是。
(四)总结反思,拓展延伸。
1、让学生谈谈本节课的收获。
2、通过今天的学习,你想进一步探究的问题是什么
七、板书设计。
2.1 整式
一、青藏铁路问题(略)。
二、单项式的概念。
单项式系数及次数的概念。
三、例题讲解
八、点评。
本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。
篇16:七年级上册数学教案免费 七年级上册数学教案青岛版
1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.
2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.
3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.
4.通过利用“几何画板”所做的数学实验的`演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.
5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.
6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.
平行线的三个特征.
灵活地利用平行线的三个特征解决问题.
老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在a点测得.如果你不通过测量,能否猜出的度数是多少?
王亮:.
老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.
学生动手按要求做实验.
老师:将你发现的规律与组内同学进行交流.
学生以小组为单位进行交流与研究.
老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.
第1组学生代表:如果两直线平行,同位角就相等。
篇17:七年级上册数学教案免费 七年级上册数学教案青岛版
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言
篇18:七年级上册数学《整式的加减》教案精选范文
教学目标
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.
教学重难点
重点:去括号法则,准确应用法则将整式化简.
难点:括号前面是“-”号,去括号时括号内各项都变号.
教学过程
一、复习旧知
1. 化简
-(+5) +(+5) -(-7) +(-7)
2. 去括号
① -(3- 7) ② +(3- 7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(- a+c) ② - (- a+c)
③ +(a-b+c) ④ -(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判断正误
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例题学习:为下面的式子去括号
+3(a - b+c) - 3(a - b+c)
五、课堂检测:
去括号:
① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题2.2 第2,3题
选做题:课本70页 习题2.2 第4题
篇19:七年级上册数学教案人教版 七年级上册数学教案苏教版
教学目标:
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
教与学互动设计:
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()
篇20:七年级上册数学教案人教版 七年级上册数学教案苏教版
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
正确理解分类的标准和按照一定的标准进行分类
正确理解有理数的概念
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。